Business Wire IndiaFacing a growing cascade of regulations and public pressure, organizations know that having a strong, end-to-end data protection strategy is a critical priority. That said, as organizations continue to invest heavily in data protection solutions, many still struggle to achieve that goal. The challenges organizations commonly face become more pressing and complex, yet the resources and time available to solve them remain static. The answer is something many organizations have done to address similarly complex challenges in data management and data analysis – the adoption of machine learning capabilities.
TITUS, a leading provider of data protection solutions and a Blackstone portfolio company, has identified five common reasons data protection strategies fail without implementing machine learning capabilities.
Five Reasons Machine Learning is Critical to a Successful Data Protection Strategy
More global regulations create complexity and confusion. The introduction of the General Data Protection Regulation (GDPR) sparked a worldwide movement to address growing public concern as to how businesses treat sensitive and/or personal data. While this is a positive step in ensuring businesses become good data stewards, it also creates complexity, as these businesses must understand what sensitive data they have, where it resides, and how it is protected to ensure they are compliant with a growing list of regulations. As each regulation has unique attributes, ensuring compliance on a continuous basis remains a significant challenge.
Explosion of data is difficult to identify and manage. Multiple sources indicate that the amount of data created and consumed daily will continue to increase exponentially for the foreseeable future. Organizations continue to heavily invest in technology to manage and analyze this data, but protecting this data remains challenging.
Traditional solutions are often inaccurate. Existing traditional methods to identify and apply context to data include Regular Expressions for data like SSNs or credit card numbers. Though these are widely used, organizations regularly report issues with accuracy and false positives. These methods are limited in terms of what data can be reported against, , creating gaps in organizational knowledge as to what data is truly sensitive.
Fewer resources and less time. Organizations worldwide grapple with finding skilled security professionals, which hinders the ability to deploy new strategies and technologies. Additionally, security and IT professionals are responsible for a myriad of projects and activities, leaving little time to ensure end users are consistently applying and adhering to data protection and security policies.
Machine learning offers a new way of thinking about data protection
Supporting Quote:
“It’s common to hear people refer to data as the ‘new oil,’ and they aren’t wrong. Data is such a critically important asset for any organization, yet most continue to struggle with data protection,” said Mark Cassetta, senior vice president of strategy, TITUS. “In the past, vendors including TITUS have championed the user as a critical component of a successful data protection strategy. Users can continue to play a central role in an organization’s data protection strategy, but they need help. Leveraging machine learning represents a new way to improve and further automate the user experience while increasing accuracy. Organizations that don’t believe machine learning will change the way they protect sensitive data will miss a critical opportunity to accelerate their adoption of a successful data protection strategy.”
Additional Resources:
Tweet This:
5 Reasons #dataprotection fails without #machinelearning (via @TITUS): http://bit.ly/mltopad42319
About TITUS
TITUS is a leader in providing solutions that enable businesses to accelerate their adoption of data protection. The company’s products enable organizations to discover, classify, protect, analyze and share information. With an open, intelligent policy manager, TITUS customers are also able to address regulatory compliance initiatives and get more out of their existing security investments, including data loss prevention (DLP), cloud access broker (CASB), encryption, and next-generation firewall (NGFW) solutions. Millions of users in over 120 countries trust TITUS to keep their data compliant and secure, including some of the largest financial institutions and manufacturing companies in the world, government and military organizations across the G-7 and Australia, and Fortune 2000 companies. More information is available at www.titus.com.
View source version on businesswire.com: https://www.businesswire.com/news/home/20190423005148/en/
This website uses cookies.