Bacteria that becomes resistant to drug uses a system called efflux pumps that act as tiny motors to flush out the antibiotic from the cells.
As a result, the drug is unable to reach its target, which aids the bacteria to survive even in the presence of an antibiotic.
In the study, published in the International Journal of Antimicrobial Agents, the researchers reported the discovery of a molecule -- named "IITR08027" -- which disrupts the proton gradient that is responsible for energising the efflux pumps and thus slows down the outflow of antibiotics.
Further, "IITR08027" when used in combination with fluoroquinolones -- antibiotics like ciprofloxacin commonly used to treat respiratory and urinary tract infections -- allows the drugs to kill the bacterial cells, thereby effectively tackling the antibiotic resistance problem.
"Antibiotic resistance in bacterial pathogens has been one of the major issues that plagues the health care sector today. According to an estimate, about 1,900 people die every day due to antibiotic resistant infections, which amounts to about 70,000 deaths per year," said Ranjana Pathania, Associate Professor at the varsity.
"Since this molecule rejuvenates the activity of fluoroquinolones against resistant bacterial pathogens, its clinical use could be a medically as well as an economically beneficial move."
The study found that "IITR08027" molecule is also effective against multi-drug resistant clinical strains of Acinetobacter baumannii.
Acinetobacter baumannii is one of the most prevalent pathogens, which has developed strategies to counter the existing antibiotics especially fluoroquinolones.
(This story has not been edited by Social News XYZ staff and is auto-generated from a syndicated feed.)
Doraiah Chowdary Vundavally is a Software engineer at VTech . He is the news editor of SocialNews.XYZ and Freelance writer-contributes Telugu and English Columns on Films, Politics, and Gossips. He is the primary contributor for South Cinema Section of SocialNews.XYZ. His mission is to help to develop SocialNews.XYZ into a News website that has no bias or judgement towards any.
This website uses cookies.