In a paper published in "Science Advances" Jing Shi, a professor from the university wrote that his team has created a TI film just 25 atoms thick that adheres to an insulating magnetic film, creating a "heterostructure", which makes TI surfaces magnetic at room temperatures and higher.
The surfaces of TI are only a few atoms thick and need little power to conduct electricity. If TI surfaces are made magnetic, current only flows along the edges of the devices, requiring even less energy.
"Thanks to this so-called quantum anomalous Hall effect, or QAHE, a TI device could be tiny and its batteries long lasting," Shi said.
Topological insulators are the only materials right now that can achieve the coveted QAHE, but only after they are magnetized.
In 2015, Shi's lab first created heterostructures of magnetic films and one-atom-thick graphene materials by using a technique called laser molecular beam epitaxy. The same atomically flat magnetic insulator films are critical for both graphene and topological insulators.
"The materials have to be in intimate contact for TI to acquire magnetism. If the surface is rough, there won't be good contact. We're good at making this magnetic film atomically flat, so no extra atoms are sticking out," Shi added.
The materials were then sent to its collaborators at Massachusetts Institute of Technology, who used molecular beam epitaxy to build 25 atomic TI layers on top of the magnetic sheets, creating the heterostructures, which were then sent back for device fabrication and measurements.
(This story has not been edited by Social News XYZ staff and is auto-generated from a syndicated feed.)
Doraiah Chowdary Vundavally is a Software engineer at VTech . He is the news editor of SocialNews.XYZ and Freelance writer-contributes Telugu and English Columns on Films, Politics, and Gossips. He is the primary contributor for South Cinema Section of SocialNews.XYZ. His mission is to help to develop SocialNews.XYZ into a News website that has no bias or judgement towards any.
This website uses cookies.