Sydney, April 10 (IANS) A breakthrough chip for the nano-manipulation of light has pioneered new paths for developing next generation optical technologies and enabling deeper understanding of black holes.
Developed by a team of researchers at RMIT University in Melbourne, Australia, the integrated nanophotonic chip can achieve unparalleled levels of control over the angular momentum (AM) of light.
This means that now AM can be used at a chip-scale for the generation, transmission, processing and recording of information, and could also be used to help scientists better understand the evolution and nature of black holes.
While traveling approximately in a straight line, a beam of light also spins and twists around its optical axis. The AM of light measures the quantum of that dynamic rotation.
Given the potential of using AM to enable the mass expansion of the available capacity of optical fibres, scientists have been trying to harness it on a chip scale.
"By designing a series of elaborate nano-apertures and nano-grooves on the photonic chip, our team has enabled the on-chip manipulation of twisted light for the first time," said Min Gu from RMIT University, who led the study that was published recently in the journal Science.
"Our discovery could open up truly compact on-chip AM applications such as ultra-high definition display, ultra-high capacity optical communication and ultra-secure optical encryption," Gu added.
"It could also be extended to characterise the AM properties of gravitational waves, to help us gain more information on how black holes interact with each other in the universe," the researcher noted.